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Abstract

The use of the linear probability model in aggregate voting analysis has now received
widespread attention in political science. This article shows that when the linear probability
model is assumed to be consistent for the choice of the individual, it is actually a member of
a general class of models for estimating individual responses from aggregate data. This class
has the useful property that it defines the aggregate analysis problem as a function of the
individual choice decisions, and allows the placement of most aggregate voting models into
a common probabilistic framework. This framework allows the solution of such problems as
inference of individual responses from aggregate data, estimation of the transition model,
and the joint estimation and inference from individual and aggregate data. Examples with
actual data are provided for these techniques with excellent results.



1 Introduction

The problem of obtaining consistent estimators for parameters of the individual behavior
from aggregate data has bedeviled the social sciences ever since the problems were illustrated
by Robinson (1950). The method which has had the most enduring popularity is that
proposed by Goodman (1953, 1959), which, if there are two groups in the electorate (say
white and blacks) voting on a candidate, says to estimation the following equation by linear
regression

Y = X161+ X284+ U, (1)

where Y is the votes cast for a candidate in an electoral unit, X; are the number in group 1,
and (3; are the parameters to be estimated. One purpose of this article is to examine what
the implications are for (1) when it is assumed that the parameters estimated from (1) are
unbiased when estimated with individual data, that is, if the following equation is estimated,

y=x101 4+ x20: + u (2)

where y is zero or one depending upon whether the individual chose the candidate, z; is one
if the voter is in group one, zero otherwise, and vica versa for .

The insight which is necessary to relate this problem to models where a probability law
is assumed on this individual is simply this: when the estimation of (2) is unbiased (or
consistent) for the parameters (3; then the residuals and the probability distribution of those
residuals is completely determined, as is shown in standard textbooks on the subject such
as Maddala (1983). Knowledge of this distribution does several things. First, it allows the
derivation of an expression for possible “bias” due to grouping in the aggregate estimator
when the estimator derived from individual data would be consistent, a problem which has
recently attracted scholarly interest (see Palmquist (1993), Ansolabehere and Rivers (1994),
and King (1995)). Second, and more importantly, it allows the placement of (1) into a more
general class of models which have desirable properties, such as estimation by maximum
likelihood and coherence with the modelling of individual choice in political analysis. This
general class of models also allows a discussion of the problems of estimating aggregate
models in terms of the problems of estimating individual models.

The strategy of this article, is as follows. The first section examines the linear probabil-
ity model under the light about what is known about the distribution of the residuals. The
second section examines the linear probability model into the more general framework of
probability theory, and suggests what implications that general framework has for problems
in aggregate analysis. The next three sections suggests some specific applications in political
science that derive from that more general framework. The first of these sections derives
the distribution of the estimators from the two-stage linear probability model for estimating
both turnout and vote choice (first introduced by Kousser (1973)) and some potential modifi-
cations which have been suggested to that procedure by such authors as Shivley (1975,1991)
and King (1995). The next section includes a demonstration of the misspecification of the
traditional transition model (also the Goodman model) under consistency of the individual
choice decision and the derivation and test of a consistent estimator. The last of these sec-
tions examines the estimation of parameters from both aggregate and individual data and



methods of combining and comparing such estimators. These three sections show the power
of placing the aggregate analysis problem directly in the context of probability theory, as
each solves a previously unsolved problem in aggregate analysis.

2 The Linear Probability Model

For ease of exposition rewrite (2)

y = BitaB:—B)tu,
y = a-+ x84 u,
y—y = w28+,
w = zB+e, (3)

with the first equality deriving from the fact that z; = 1 — 25, and where y is the mean of
the y’s, w is defined as y — y, and & = x3. Since @ = y when (2) is correctly specified, (3)
also produces unbiased estimates of B = 3 = 3, — (3.

If there are n individuals grouped into N electoral units, let R be an N cross n grouping
matrix with the i**, ;' element of R being one if the 7 individual is in the i** electoral

unit, zero otherwise.! The matrix form of (3) is
W=XB+E, (4)

where X is the matrix of the z, W is the matrix of the w, and E is the matrix of the ¢, all

of these matrices being n by 1. Then premultiplying (4) by R gives
RW = RXB + RE, (5)

An estimation of (5) by the method of least squares gives

B = [X'R'RX]|"'X'R'RW,
_ py NRERE
B X'R'RX’

Now, the 5 element of X'R’ (which is 1 cross N) is of the form Y77, z;;, where n; are
the number of individuals in electoral unit j, and z;; is the value of z for the " individual
in electoral unit j. The 5 element of RE (N cross 1) can be found similarly to be 312, €;;.
This then gives

X'RRE YL il 2ji Yils €
[(X'R'RX] XL Sty 2 ity @i

(6)

More complicated forms of the grouping matrix are available, which create group means for the in-
dividuals in the group (see Erbing (1989) or Palmquist (1993)). This form is sufficient for the purposes
here.



Taking the expectation of this conditional on the x, if the expectation of each ¢j; is zero, then
the sum of the expectations is zero. Thus the aggregate model given by (5) is conditionally
unbiased.

All of the above has been done without any knowledge of the distribution of the residuals.
This then raises the question of why there is now a large amount of work finding formulas
for “biased” estimators (see Palmquist, Ansolabehere and Rivers, and King), all of them
derived under the assumption that (4) is the true model. The thinking here is that the
grouping process is correlated with the error term,? so that E[3."2, ¢;;] # 0. Note that since
the expectation of a sum of random variables (the ¢j;) is the sum of the expectations that
implies that the individual expectations are also non-zero. Since the residuals are still the
same (if the individual model is to be unbiased) this implies that the probabilities of the
residuals occurring within this group have been changed, while still remaining the same for
the overall collection of individuals. Can the probability be altered while still maintaining
consistency of the individual level estimation?

Here is where knowledge of distribution of the residuals under the assumption of con-
sistency of the estimators from the individual equation is needed. Equation (2) falls in the
class of linear probability models, that is, a regression model in which the dependent vari-
able y is a binary variable taking the value of one if the event occurs and zero if it does not.
Obviously, the residuals can only take on the values 1 —a — 3z and —a — Bz, the first value
occurring when y = 1 (or w = 1 — «), the second when y = 0 (or w = —a). Note

Elelz]= (1 —a)(1 — a — fBz) + a(—a — pz) (7)

where 1 — a is the probability of (1 — a — 3z) occurring and a is the probability of —a — gz
occurring. Then equating this to zero gives ¢ = 1 — o — [z, so the residuals of (3) are
1 — a — Bz with probability a 4+ Bz and —a — Bz with probability 1 — a — Bx. Maddala
points out that a 4+ Sz has to be interpreted as the probability of y occurring given the =z,
which is also the probability of the residual with value 1 — o — Sz occurring, so the derived
probability is the same as the interpreted probability. This conditional unbiasedness implies
consistency, that is, the plim X'E/n = 0.3

These results can then be used to alter the probabilities of the residuals occurring inside

2Usually. There is also a school of thought which assumes that aggregation in and of itself produces
bias. See Firebaugh (1978), Erbing and Palmquist. The results of the next section are needed to examine
this claim in its full generality. It should be noted, though, that if there is a variable which is correlated
with the error term and does not bias the individual level estimate, then one can condition the error term
on that variable and obtain an error term with a reduced variance by the Rao-Blackwell theorem. Thus
the estimation of the individual-level model will be inefficient. Another implication is that one of the usual
methods of determining the adequacy of a regression model, correlating estimated residuals with variables not
in the model, will show a non-zero correlation with the correlated variable, leading, by the usual procedure,
of putting this variable into the model, and thus estimating a misspecified model.

3Unbiasedness implies consistency but one can have consistency without unbiasedness. In the linear
probability model, though, since plim X'E/n = plim 3 _,(1 —a—g)/n—plim }_ _(a+ 3)/n=Pr(y =
e = 1)(1 —a = B) = Pr(y = 0]z = 1)(a + ), the interpretation of Pr(y = 1) = a + Bz implies that
Priy=1lz=1) =a+ p and Pr(y = 0]z = 1) = 1 — @ — 3, and these probabilities establish conditional
unbiasedness, so consistency implies unbiasedness in this case.



Table 1: Joint PDF of f(ei—1,€)

o+ Bx I —a—pz
a+ Bz (a—l—/8:13)2—|—011 (a+ pz)(l —a—PBz)+ b0y
l—a—p0z (a4 fz)(l —a—[z)+ 0y (1 —a—Bx)* + by

any grouping while still maintaining the the unbiasedness at the individual model. Presum-
ably the process by which this altering of probabilities takes place is that there is a serial
correlation between between observed residuals at time ¢t — 1 and at time ¢, and between
these two times some entity rearranges matters based on the observations of the residuals
at time t — 1. Keeping the requirement that the linear probability model estimated from
(4) be consistent at both time ¢ — 1 and time ¢, write the joint pdf of the residuals €1, ¢
as given in Table 1.* In Table 1 the correlational terms # are written as deviations from
the product of the individual probabilities. It can easily be confirmed that 61, 4+ 61, = 0,
011+ 031 =0, 015+ 020 = 0, and 031 + O3 = 0. All of these equalities taken together imply
that § = —0,2 = —031 = 011 = 033. Consistency with non-negativity of probabilities also
implies that # is less than the minimum of (a + 8z)? and (1 — a — fz)%°

Conditional probabilities will be needed and can also be calculated from Table 1. They
are

Prie¢=1—a—fzle-1=1—a—pz) = a+ﬁx+a—|—ﬁx’

Pr(¢; = —a—fBzleei=1—a—p2) = 1—a— P+

a+ Bz’
Prie, =1—a—pzle1 = —a—pz) = O“"ﬁm—l'm’
0

Pr(a = —o = faler = —a—fr) = 1—a—fot——70.
(8)

Define nji(z,t) = {n;(z,t)|n;(z,t) = 1 — a — Bz}, the number of individuals for which the
residuals have a value of 1 — a — Bz at time ¢, and njz(x,t) = {n;(z,t)|n;(z,1) = —a — Bz},
the number of observations for which the residuals have a value of —a — Bz at time ¢. Let
mijr be the number of observations from n;;(x,t — 1) which are transferred from electoral

4The joint pdf display in Table T is a member of the class of distributions called the bivariate binomial
distribution, about which more will be discussed later (see Stuart and Ord (1987), section 5.50).

5The 0 term can be made random and the following will also go through but since as will be seen in the
a later section that the linear probability model is not the best way to model voting behavior this extension
is not made. The probabilities can be allowed to vary between time t — 1 and ¢ but that just creates
complications without adding to the examination of “bias” due to grouping. Incidentally, this makes it clear
that if there 1s contemporaneous correlation, then the linear probability model 1s biased at the individual
level, as then a 4+ [z is no longer the probability of the event occurring given x. The results of the next
section are necessary to handle this type of dependency.
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unit k to electoral unit j between time ¢ — 1 and time ¢ (it is assumed that realizations at
time t — 1 are observed). Define §;; = Ei\;l Tijk — chvzl Tik;, so that d;; is the overall transfer
of individuals whose residuals have a value of 1 —a — Bz (i =1) or —a — Bz (i = 0). Then
the following equality always holds:

nj(z,t) =nj(x,t —1) 4+ ;1 + nja(z,t — 1) + &j0. (9)

The quantity of interest is now the expected value of nji(z,1) + nja(x,t), as this is also the
expectation of 312, ¢;;. Using the conditional probabilities calculated above in (9) one has®

Elnji(z,t)] = Prle=1—a—0zlg_1=1—a—Fz|(np(x,t —1)+ ;1)
+Prle; =1 — a — Bzl = —a — Bz](nja(x,t — 1) + §;2)
= (a+Bz)nj(z,t — 1)+ ;]
0

+(a + Bz)(1 —a— ﬂ:l:){(l —a— pr)nj(e,t —1)+ 6]

(a4 fa)ne,t— 1) + m} (10)

and
E[nj(z,t)] = Prle = —a— [zl =1—a— pz](nji(z,t —1)+ ;1)

+Prle; = —a — fBrlems = —a — Br|(nja(z,t — 1) + d;2)
= (I —a—=pBz)ni(z,t = 1)+ ;]

0
‘|‘(a + /8511)(1 —a— ﬁl‘){(a + BLC)[an(:Z:,t — 1) + 5].2]
_(1—Oz—/8$)[nj1($,t—1)+5j1]}_ an

Then the sum of the expected numbers for each residual times that residual gives the
expected value,

E [é 6;’2’] = 'Z:% {(1 —a—=pz)E[n;i(z,1)] — (o — Bz)E[n oz, )]}

1

0
- é{mwmu—a—ﬁ@

(o4 Bo) ol — 1) 4+ w}.

(1 —a = Bz)[nj(z,t = 1)+ ;]

To obtain the overall expression, note 3.2, x;; = n;(1,¢), and so (6) becomes

X'R'RX 2

ElX’R’RE] _ o (L)
7=1 Z]kVZI nk(17 t)Q

SAll of these expectations are conditional on z, n;(z,t), and n;(z,t — 1).
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1

0
IZ:%{ (o + B2)(l — a — )

—w+ﬁﬂhm%t—0+&ﬂ} (12

(1 —a—=Bz)[nj(z,t —1) + ;]

This expression then completely typifies the nature of bias assuming that the linear proba-
bility model is true and unbiased estimated on the individual level at both time { — 1 and
time £. King (1995) gives five different formulas for bias and shows they are equivalent
(these formulas include both the Ansolabehere and Rivers and the Palmquist formulations).
Therefore, under the assumption of unbiasedness of the linear probability model, they are
all equivalent to the above formula.”

If nj =1 for all j, then the é;; = 0, and (12) reduces to

X'R'RE ! 0
g lX’R’RX] - Z{n(a + Bz)(1 — a — )

r=0

[(1 —a— ﬁ:r;)inﬂ(:z:,t -1 —(a+ /Bx)zn:njg(x,t - 1)] },

i=1

for which the plim is equal to zero, since plim 3-7_, n;1 (2, t—1)/n = a+Bz and plim 3=7_, nj(x, t—
1)/n = (1 — a — Bz) by the assumption of individual consistency at time ¢ — 1. So without
aggregation there is no bias. Even with aggregation if the serial correlation between the in-
dividuals at times ¢ — 1 and ¢ is zero (6 = 0), then there is no bias no matter how one might
have arranged the individuals into electoral units. Also, if the n;;(z,t — 1) are themselves
close to the expected values, which one would expect under random grouping, then

Elnj(z,t—1)] =nj(z,t — )Pr(¢s =1 —a — fBz) =nj(z,t — 1)(a + fx) (13)
and

Elnj(z,t —1)] = nj(z,t — 1)Pr(e, = —a — Bz) = nj(z,t — 1)(1 — a — fz) (14)
then under these two equations holding (12) becomes

X'R'RE| % n;

X'RRX| oyl n}
21: 0
| (a+Bz)(1 —a—pz)
which shows clearly that, starting with an unbiased arrangement of individuals into groups,

bias is created by the movement of individuals between electoral precincts by a number
disproportionate to their expected number of residuals in the population.

[u—a—ﬁm@rwa+ﬁw%@,

The process described here requires an observation on the realizations at one time and
then selection on the basis of of that observation for rearrangement of voters between electoral
units before the next observation.

7If the condition of individual unbiasedness is dropped, then all the formulas for “bias” are essentially
useless as B can take on any value.



How likely are these manipulations, that is, how probable is it that someone is observing
the errors and then performing rearrangements based on those? One consideration is that
the lowest level of electoral units in this country is usually the precinct. The selection process
outlined above implies that whatever entity is moving individuals around has knowledge of
the behavior of the individual. This will rarely be the case. Furthermore, the assignment
of voters to election precincts is done primarily by a county registrar of voters who has
no reason to assign individuals from one precinct to another on the basis of their observed
behavior (which the registrar won’t know in any case because the ballots are unmarked).
And since the registrar cannot move individuals from one district to another (they would
merely be assigned from one precinct to another within the district, and so those individuals
would still vote for the same slate of candidates), there would be no particular reason to do
so. Therefor it would seem a priori that aggregation at the level of the precinct would seem
to meet every criteria for random grouping and estimations done at the aggregate level will
be consistent if (3) holds. What happens when (3) does not hold will also be examined from
a probabilistic point of view.®

Finally, a question which might be addressed is why researchers have concentrated so
much attention on the linear probability model, a model which in general is not used anymore
in individual choice problems?? The answer has to be that it seems at first glance to be the
most natural way of presenting the problem, that is, if w = B + ¢, it is straightforward to
add up this equation (which is what the grouping matrix does) for members of an electoral
unit to get an aggregate equation to estimate. By apparent analogy with the usual least-
squares estimation, no distribution on the error term need be assumed, aside from the
usual zero mean and conditional unbiasedness, to ensure consistency of the estimator. This
makes it a more general method than the method of maximum likelihood, which requires the
specification of a probability law for consistent estimation. As has been seen, though, if one
does assume unbiasedness of the linear probability model when estimated at the individual
level, then the residuals are completely determined, and so the advantage of least squares
(not having to specify a probability law on the residuals) is lost. It is to what these residuals
imply for the theory of aggregate analysis which is discussed in the next section.

8Since the lowest level of electoral behavior which is usually observed is the precinct (surveys almost never
have the number of observations necessary to begin to make this type of non-random assignment), this is the
unit that one might expect to be manipulated. There might be, for example, a definite partisan advantage
for the movement of precincts between districts on the basis of observed realizations, and the agency that
might be doing so, say a state legislature during a redistricting, could very well have a such a motivation.
The results of the next section will be needed to examine the effects of this type of behavior.

°King (1986) states that the use of this model “can yield predicted probabilities greater than one or
less than zero, heteroskedacticity inefficient estimates, biased standard errors and useless test statistics.”
(Maddala (1983) gives a discussion of some of the problems associated with this model-see page 16). The
reason it actually works in this case is that estimation of the individual level equation (3) by least squares
gives the frequency estimate of those with an x value of one choosing the candidate. Examination of (6)
shows that this equation, without “bias”, also gives the frequency estimate.



3 Relation to Probability

This section examines the question if there is a probability model induced by the linear
probability model, what does it imply about the aggregation process? The short answer is
everything, with some qualifications to be discussed in this section. The well-known result
(Rao (1973)) is that if one has a sum of independent random variables Yj;, then the sum of
these random variables is the convolution of these random variables (and its characteristic
function is the product of the characteristic functions of the Y};), that is,

Y=Yt 4 Y, (15)

This equation deserves to be called the fundamental equation of aggregate analysis, because
it provides a theoretical basis for understanding any theory of aggregate inference which is
consistent with a probabilistic choice model defined on the individual.'® This is the equation
used explicitly in Lupia and McCue (1990) (page 384), Brown and Payne (1987) (equation
3.1), Hawkes (1969) (page 70), and MaCrae (1977) (equation 3.1), and there are a number

of the implications which are now discussed.

The most obvious and useful inference to draw from (15) is that if one knows the proba-
bility law on the individuals, one know the probability law describing the distribution of the
sum Yj. Ipso facto, then, there exists a consistent estimator for the distribution for the sum,
namely, the estimator which comes from the method of maximum likelihood. Theoretically,
then if one knows the probability laws on the individual choices in an electoral unit, one
knows the probability law on the sum of those choices in the electoral unit. Therefore the
entire theory of aggregate inference is resolved, and furthermore resolved in such a manner
that proposed estimators (at least any which are based on a probability law for the indi-
vidual) can be compared.'’ Knowing the theory, of course, and implementation in practice
are two separate matters. For one thing, there are limitations, on the method of maximum
likelihood, just as there are limitation on other methods of estimation. Aside from the usual
regularity conditions (which are assumed to be met), the possible causes of problems in ag-
gregate analysis all have individual-level counterparts. The various forms of misspecification
are given in Table 2, and will be discussed in the order given.

The first problem listed in Table 2 is that there are too many parameters to estimate
the model. At the individual level, suppose the Yj; are parameterized by p;;. Even if one
had access to individual data, any estimation by the method of maximum likelihood would

10This equation holds if the Y;; are not independent, if Pr(Y; < w) is defined as the integral of the
distribution function of the joint distribution of the Yj; over Yj1 4+ ... 4+ Vi, < w (see Stuart and Ord,
Section 7.26). If this is the case, though, the distribution of the sum is no longer defined as the product of
the characteristic functions. One procedure to follow is to replace any of the dependent Y;; with the random
variable representing their actual distribution. Thus is Y;; and Yj» are assumed to be dependent with one
another and with no other individuals, then Yj; 2, representing the joint distribution, would be used in the
place of Y;1 4+ Yj;2. The question of dependency is discussed in more detail below.

10ne can abandon the requirement for a probability law on the individual. Linear programming models
basically do that (see Claggett and Van Wingen (1993)). Tt should be noted, though, that if there is a
probability law on the individual, even if it is not modelled, then the estimator from aggregate data is still
a function of the individual probability laws.



Table 2: Problems in Aggregate and Individual Analysis

Aggregate Problem Individual Problem

Too many parameters to estimate model Same, but less restrictive
Modelling different probability laws as same | Same

Modelling dependent choices as independent | Same

Modelling wrong functional form Same

Aggregation “bias” Choice-based sampling

break down, because there is one parameter for every individual. The usual restriction which
is placed on this model, then, is to parameterize the p;; by some parametric function q, so
that p;; = q(zj;,7), where z and 7 are conformable vectors. Then if the number of 7 don’t
grow with the sample size, under broad regularity conditions, one can obtain a consistent
estimator of 7 and hence of pj;;. At this point (15) can be estimated, at least in theory.
The difficulty for aggregate estimation comes from the fact that convolutions of, say, binary
random variables, can produce a large number of terms in the actual convolution (on the
order of 10°°° with 500 binary random variables with different values p;;). This is beyond any
current ability to calculate, even with modern computers.'?> Therefore, another restriction
must be applied.

One restriction is to assume that a number of the Yj; have common distributions and
that the distributions convolve into known distributions. It is now shown that the problem
described at the beginning of the paper, that of the linear probability model, follows exactly
this restriction, since individual consistency implies that one knows the distribution of the
residuals. To show this restriction explicitly, note that first there are two groups in the
electorate (corresponding to = 0 and = = 1). Each member of either group can make
either one of two choices, a vote for the candidate or a vote not for the candidate.!® The
probability of choosing the candidate is the same as Pr(1 — 2B = €¢) = o + [z (and the
probability of not choosing is 1 —a — (z), so there are two types of bernoulli distributions in
any electoral precinct (since z = 0 or x = 1). If there are n;(7) individuals of typei (1 = 0,1)
in electoral precinct j, the bernoulli’s with probability o+ 3 (those corresponding to x = 1)
of choosing the candidate convolve to a binomial with parameters (n;(1),a + 3), while the
bernoullis with probability « (those corresponding to @ = 0) convolve to a binomial with
parameters (n;(0), ). Therefore the probability of observing Y; individuals choosing the
candidate is simply the convolution of these two distributions.

12 A possibility exists that not all of the permutations need be calculated in order to provide an estimate in
these circumstances—that, in fact, a random sample of the permutation might produce a consistent estimate.
This line of inquiry is beyond the scope of this paper!

13The case of abstentions or indeed not turning out for the election will be discussed later.



Let p1 = a4 # and py = a. Then one can write the Pr(Y;) as

Pr(Y)) = % ( ”ff” ) pi(1 = pp) O ( %](_O)Z ) po (1= po) @0 (16)

1=0

where it is understood that | ¢ | is zero if b is greater than a or b is less than 0. Then

b
estimation of this by maximum likelihood will produce consistent estimators for the a and
3.1 Rather than estimate this likelihood in the above form a normal approximation can be

made (see Feller (1950)). This gives
Y =n;j(1)pr +ni(0)po + w1 + s, (17)

where u is distributed normally with mean zero and variance n;(1)p;(1 — p;) and uy is
distributed normally with mean zero and variance n;(0)po(1 — po). It is clear that (17) is (1)
or (5) but now the distribution of the error terms are known.'> This is the form of the model
given in Lupia and McCue and it is clear that estimating the aggregated linear probability
model is the same as estimating the Lupia and McCue model by the method of least squares,
assuming no aggregation bias of the type discussed in the last section. Maximum likelihood,
though, is of course the preferred method of estimating this equation, because, as Lupia and
McCue point out, the equation can be estimated both with and without the assumption that
the variances are of the form given above. This can be then be used in a simple chi-squared
test.16

The next problem in Table 2 is that of modelling different probability laws as the same
probability law. This is the equivalent of convolving together in (15) two or more different
probability laws into one. Social science descriptors, unlike those attached in the physical
sciences, tend to be highly variable. That is, a piece of quartz is still a piece of quartz
and implies certain properties about itself, but a “black” or “white” does not necessarily
imply anything about the individual. In particular, one can conceive of there being two
types of white, poor whites and and non-poor whites, with different probabilities of voting
for the candidate. The simplest case of this is when there are three types of individuals in
the electorate, all three with different probability laws, and the random variables associated
with two of these groups are convolved together under the mistaken belief that they share
the same probability law.

This case is treated in detail in Lupia and McCue with numerical and graphical examples
and there is no need to repeat it here, but suffice it to say that if this is the case, then the
estimate of B in equation (3) is a function of the parameters of the three probability laws
and of the the distribution of the types of individuals throughout the electorate, and B can

141t is an interesting exercise in probability calculus to show directly that the estimators obtained by the
method of maximum likelihood from this equation are consistent.

157t should be noted for historicity that Hawkes (1969) was apparently the first to recognize that the
nature of the aggregation in ecological regression implied a distribution on the error terms. Hawkes’ model
will be discussed more fully in the next section.

16 As is well-known, minus twice the log of the ratio of the restricted to unrestricted likelihood is distributed
asymptotically chi-squared.
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Table 3: Joint decision probabilities of a dyad

P11 P12 | P1.
P21 P22 | Pa.
P1 P2 ‘

be a long way from what one believes B is. It is important to realize, though, that if the
likelihood ratio test arising out of (17) is not rejected, then one can have some confidence
that this is not a problem. Furthermore, the same problem arises if the analysis is done
with individual data at the level of the individual, if one estimates two different types of
individuals as one type of individual.

The next problem in Table 2 is modelling dependent choices as independent. It might
be natural to assume, for example, that voting decision of each member of a dyad!” are
correlated with the voting decision of the other member. If this is the case, then the way to
make (15) correct is to model that couple’s probability law jointly, having possible outcomes
of 0, 1 or 2 votes for the candidate. Then (15) still holds. What if that is not done in
individual analysis, that is, what if the probability of choosing a candidate is described by
Table 3?'®  If the modeler uses p; and p, to model the probability rather than py; and
p12, then there is misspecification, and furthermore, it will almost always bias the estimator.
Linear regression allows one to not specify the distribution of the error term, but choice-based
estimation, which almost always uses some form of the multinomial,'? is not as forgiving. So
it can be seen if there is this endogenous dependence of the voting decision, then individual
analysis is also misspecified. Thus while this is a certainly a possible source of error, it is
present in both individual and aggregate modelling.

The next error in Table 2 is modelling the wrong functional form. This is obviously a
problem in both aggregate and individual level analysis. These problems are compounded
when the probabilities are parameterized by other functional forms with their own parameters
and covariates. From the standpoint of aggregate modelling, though, an interesting question
is how to model processes where the individual choice model does not lend itself easily to
the calculation of the convolution. Several different approaches suggest themselves in that
case. First, it will usually be the case that some type of central limit theorem applies if
there are sufficiently few groups with common parameters, so a normal approximation may

1"Two individuals residing at the same address with an interpersonal relationship.

8Table 3 can be motivated as follows. Assume that there is an underlying continuous variable y* = rp+w,
and if y* is above a certain point (call it ¢), the candidate is selected, otherwise, the candidate is not. Now,
for the dyad, if the probability of the event {v1 > %, vy > ¥} is not the product of the probabilities of the
events {v1 > 9}, {vai > 1}, then the correct probability for the residual for the observed member of the dyad
(call that person 1), is Pr(vi|vz). If one looks only at the individual voting decision, and assumes Pr(vy) is
the correct error term when Pr(vy|v2) is actually the distribution of the error, then there is misspecification
if Pr(v1|ve) # Pr(v1). And in general these will not be equal, if, say, the v; are jointly distributed normally
with non-zero correlation coefficient, a common assumption on joint residuals.

190r even more complicated forms, such as elimination-by-aspects or nested multinomial logit.
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be used. Second, method of moments estimates can be used even if distributions cannot
be estimated directly since “cumulants cumulate”, that is, moments of the sum can be
expressed as products of the individual moments (for an application of this approach, see
Blischke (1964)). Finally, using (15), it should be possible to calculate the distribution of
the sum, if not analytically, then at least numerically. It should be noted that different
hypotheses about the nature of the individual decision should lend themselves to different
hypothesis observable at the aggregate level, just as at the individual level.

It is now shown that the “bias” calculations discussed in the last section are an additional
complication to this estimation problem. Let

(nﬁ(l},t— 1) —I-CS]Z) .
=, 1 =1,2, 18
TL](LE,t . 1) 7] ? ( )

Considering the model of serial correlation given in Table 1, one can write down the proba-
bility of the individual in electoral unit j as*®

Prl¢=1—a—pzt€j) = Prla=—a—[Fzle¢_1=1—a— Bx]yp
+Prle; = —a — fBrlemr = —a — Br)yip

(19)
then after some algebra,
. 11— a—pfa
Pr(e, =1 —a — Bz|t =« 0 . 2
(e a—pritej)=a+pfz+ (ot 30 —a— 1) (20)
A similar process then leads to
Pres=—a—fzltej)=1—a—pBz+0 o+ bz = iz (21)

(a+Bz2)(1 —a—pz)
These probabilities can then be place back into (16) or (17) to construct a likelihood.?!

This likelihood is inestimable in its full generality, since while # is constant across all
parameters, the v;; as specified here can vary with the electoral units, creating 2 times N
parameters to estimate, so the method of maximum likelihood breaks down.?? The problem,
which can be called “bias”, comes about because of serial correlation of the residuals and
non-random assignment of a previous realization of the individuals with those residuals. An

20Implicitly it is being assumed that the conditional probability of the residuals is not changed by a change
in the modifying distribution. This seems reasonable here by the the method in which the dependency is
derived. For a discussion of this postulate in general choice modules, see Manski and McFadden (1981, page
Xix).

Z1This is the equivalent of parameterizing the probabilities p; with parameters # and +;;. Parameterization
has implications for aggregate estimation which are discussed in Appendix I.

22This problem is known in the ecological literature as the “constancy” problem, where, if one considers
the two parameters in (1) to vary for every electoral unit, then one always has a perfect fit (and the error
term is zero), but it is impossible to estimate the equation. The constancy assumption is then that the two
parameters in (1) are constant across all electoral units.
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estimable likelihood function can be made with the parameters from equations (20) and (21),
if there are additional assumptions about the nature of the “bias”. For example, it can be
assumed that the «;; are parameterized by some exogenous variables observed at the level of
the electoral unit. Or, it might be assumed that the 7;; are random with some distribution,
thus creating a random effects model. By any standard methodology of statistics, however,
one should fit equation (17) first as the simplest model, before going on to the model derived
from equations (20) and (21). Only if (17) is rejected should the researcher go on to other
models.?

The analogous problem to “bias” at the individual level is choice-based sampling, which
also alters the probabilities of the observations.?* Choice-based sampling is simply choosing
on the basis of observed values of the endogenous variable or on values which are correlated
with the observed values (such as previous realizations). Just as with the procedure here,
the likelihood of the observations occurring has been altered, and there are ways of adjusting
for the changed probability law (see Cosslett (1981), for a demonstration of some of these
methods).

It has been argued that when the electoral unit is the precinct there are no a prior:
grounds to expect any bias, that is an outside entity manipulating voters between electoral
units for some advantage. Districts, though, are made up of precincts, and, using (15), the
distribution of the votes in a district can be represented as

D= YV = Y3V 22)

JjEd JjEd =1

If there is selection on the precincts, this then requires, as was done in the last section
with the linear probability model, calculating the probabilities of 37, Y;, which will now be
expressed as conditional on previous realizations. This formula also allows direct estimation
of district voting behavior by providing the distribution of the district vote.?®

Finally, does aggregation in and of itself produce bias, as has been claimed by a number

231t should be obvious that it will not, in general, be possible to differentiate “bias” and any of the other
types of misspecification describe above, just as in estimating an individual model it is very difficult to
determine different types of misspecification.

24A distinction needs to be made here between a sample representative of the population and a sample
for which one is modelling a regime through what is known in the statistical literature as the ancillarity
principle (see Stuart and Ord, section 31.12). Take the famous Literary Digest Poll of 1936, which predicted
that Landon would defeat Roosevelt. Since this poll was conducted by telephone, and the country was in
the middle of an economic depression, those who had telephones were disproportionately well-off and thus
disproportionately inclined to vote Republican. The sample was thus not representative of the population.
If, however, one were fitting a model of voting behavior to this sample, one would have f(z,y) = f(z)f(y|z),
and one would be estimating y (vote choice) conditional on the x (what are called exogenous characteristics,
such as age, income, partisan affiliation, etc), and by the usual standard assumptions, estimates of parameters
associated with y would be consistent. What this says is that selection on exogenous characteristics does
not invalidate the probability law f(z,y).

Z5Typically, regressions on districts have not been consistent with the assumptions of individual analysis,
as they cannot be expressed in terms of (15). Models of presidential selection based on macroeconomic
indicators, approval and so forth are also not coherent. Even a model which follows (15) will, as an empirical
matter, not work on districts, a problem which is discussed in Appendix I.
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of authors? The answer is a qualified no. Equation (15) is always true, so any “bias” must
be described by this equation. Certainly in the case of independence of the random variables
being summed, there is no bias. When the random variables are dependent, this produces
the same problems for individual choice-based estimation as it does for an aggregation of
those choices, so aggregation per se cannot be said to be creating the problem. The case
where there needs to be a qualification to the no is that, as in choice-based sampling at the
individual level, one can alter the probabilities of the observations occurring away from the
distribution one would usually model them. In this case, though, (15) still holds, but the
probabilities must be modelled correctly.

This can be shown in complete generality as follows. Suppose one has a regimey = z3+u,
and suppose that there is a random variate z such that u and z are not independent. Then

let € = ulz, so that the Pr(e) = Pr(u|z). Then
Pr(u, z) = Pr(u|z)Pr(z) = Pr(e)Pr(z) = Pr(e, 2) (23)

Now, suppose one wants to aggregate and this aggregation is a function of the z. The above
shows that ¢ and z are independent, so ¢ is independent of any function of the z.2¢
particular, if the aggregation operator R is a function of the z, R(z) is independent of the
error term created by conditioning u on z. Thus while aggregation does offer this opportunity

In

for “bias”, it can still be handled with a correct modelling of the probabilities, just as can
choice-based sampling.

4 Methods of Estimation

There are numerous applications for what has been done in the previous sections of this
paper. The first discussed is the distribution of the two-stage procedure under the assumption
of the consistency of the linear probability model at the individual level, which has not
appeared in the literature before. This two-stage procedure, which estimates both turnout
and vote choice, was evidently first created by Kousser (1973). One difficulty with the linear
probability model is that it is restricted to modelling events which either occur or don’t
occur. One way of overcoming this is to estimate two separate equations,

Y:X191+X292—|—U (24)
and
T=Xim+ Xy tv, (25)

where T are the voters who turn out in an electoral unit (as opposed to registered), ¥ are

the votes cast for a candidate in an electoral unit, X; are the number in group ¢, and the 8;

and ~; are the parameters to be estimated. The interest is in the distribution of the functions
g

26Tn particular, if 4 and z are jointly distributed bivariate normal, which would be the usual assumption,
the distribution of u|z is independent of u. This is shown by direct calculation for the bivariate normal in

Rao, (3d.1.3).
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Table 3: Joint PDF of f(e,, )

a+ Bx 1 —a—px
n+ ¢z n+ ¢z 0
l—n—¢x —n—co¢rx+a+pr 1—a—7px

which are taken to be the proportion of the group who voted for the candidate, given that
they actually turned out. The asymptotic distribution of this estimator is now derived
under the assumption of the consistency of the linear probability model when estimated at
the individual level.

The problem above is stated in its aggregate form and needs to be related to the linear
probability model when estimated at the individual level. Let

y:a‘|’$ﬁ+6y (27)

and

l=n+xd+ ¢ (28)
be the individual level linear probability models corresponding to the above aggregate models
(here, as in equation (16), n+ ¢ =1, n = y2, o + f = 01, and a = ;). The assumption of
consistency on both the turnout and vote choice equations implies that the joint probability
of voting in the election and voting for a candidate can be written as in Table 3.2” Thus under
individual consistency, the choices for turnout and vote choice follow a bivariate binomial
distribution with the probabilities given in Table 3. Since the probability of an individual
voting for a candidate is zero if that individual does not vote, there are only three non-
zero entries in this table, and these are completely determined by the marginal entries, and
the distribution, as Wishart (1949) points out, becomes a univariate trinomial distribution
(that is, the usual trinomial). Since there are only two different values of x, using (15), the
individuals in each electoral unit convolve to one of two trinomials. The likelihood for this
estimation by a normal approximation to the multinomial is given by Hawkes.?®

An additional wrinkle occurs when (41,72, A1, A2) are functions of other variables, say
ve = f(r,vr) and 0 = ¢g(r,pr), where the r’s are variables defined at the level of the
aggregate unit (here the optimization is done with respect to t; and pi, which may be
vectors ). This is known as parameterization and it seems to have been introduced by Miller
(1972).% This likelihood is also in the literature (see MaCrae or Brown and Payne (in the
case where the aggregate compound multinomial is simply an “aggregate” multinomial)).*

2TFrom (27) and (28) and Table 3 one can interpret (26) as an estimator of Pr(y = 1|t = 1).

Z8Hawkes model is for the transition model, where the groups are formed by other voting choices, rather
than groups formed by exogenous characteristics of the individuals (such as race). The likelihood is still the
same, however.

29With a linear form. MaCrae used a log-linear form. For a discussion what parameterization accomplishes
in aggregate estimation, see Appendix I.

30These models are also for the transition model but once again the likelihood is the same. “Aggregate”
in the terminology of Brown and Payne means the convolution.
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The formula for the proportion voting for a candidate out of those turning out becomes

DX;

5, = Zaz 00520
]17( @ZJ)

; =

(29)

In either definition of the ); the asymptotic distribution is easily found through stan-
dard maximum likelihood theory. Letting A = (A1, A;), defining w, = (71,72, A1, A2) and
w, = (Y1, 2, p1,p2), then by a corollary of Slutsky’s theorem (see Rao, page (385-388)), the
asymptotic distribution of VNA in the unparameterized case is simply normal with mean A
and covariance matrix

Var(VNA) = l‘%] Var(vV N, VV4) [ a r, (30)

@wu u

and in the parameterized case it is

Var(VNA) = [a ]Var(\/_zb \/_,o)[ p]t. (31)

Ow,
All of the usual inferences on the elements of A can be made from the appropriate matrix.

Since maximum likelihood is asymptotically efficient when the correct probability model
is specified and the assumption of individual consistency of the linear probability model
determines the probability distribution, there is no method of estimation which is more
efficient than what has been described above. There are, however, several methods which
have been been used or proposed in the literature for which the distribution of A can be
derived. The first is least squares, and the estimator is then

5\' _ 0; + (XIX)_lXIEY
! Yi + (X/X)_lX/ET’

(32)

where E, is the vector of ¢, and Fr is the vector of ¢;. The joint distribution of (X'X)™' X'Fy
and (X' X)~'X'Er is necessary to calculate the asymptotic distribution of this statistic. The
three categories of the multinomial are no vote, vote for the candidate, and vote against the
candidate, with probabilities pi(z) = n+¢z, p2(z) = 1—a—pBz, and ps3(x) = —n—dr+a+fz,
respectively (set p(z) = [pi(x), p2(2), ps(2)]"). Then if Z = [Z1;, Z2j, Z5;]" are the respective
numbers of voters in the three categories in electoral unit j, this can be approximated by

Z =n;(1)p(1) + n;(0)p(0) + u(1) + u(0) (33)

where the distribution of each u(xz) is trivariate normal with mean zero and covariance entries
n;(z)p(z)(1 — pi(z)) along the diagonal and —n;(z)p;(z)pr(z) otherwise.®® Equations (24)
and (25) are equivalent to multiplying (33) by a 2 by 3 matrix (call it A) with the (1,2),

31Gee Stuart and Ord, page 487, for a derivation of this approximation.
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(2,2) and (2,3) entries having value one and other entries being zero. Then Afu(1),u(0)] is
multivariate normal with mean zero and variance

@0 -p) p@pa)
Var(ep, ) = 2 m(@) | 7 p(e) (a1 — pa(a)) (34)

It is now straight-forward to calculate the asymptotic distribution of 5\2', as the same
corollary of Slutksy’s theorem applies to the least squares estimators as well.>> Define Qy
as the matrix with 32! _on;(2)pa(2)(1 — pe(z)) for the jjth entry, zero otherwise, Q7 as
the matrix with 3°!_on;(2)pi(z)(1 — pi(x)) for the jjth entry, zero otherwise, and Qy 7 as

the matrix with 321_;n;(z)pi(z)p2(z) for the jjth entry, zero otherwise. Assume that the
following plims exist: plim X'X/n = Yx, plim X'Qy X/n = Yy, plim X'QrX/n = Y7, and
plim X'Qy7X/n = Xyr. Then

Var[V/NO,V N3] = Var[VN(X'X)" X' By, VN(X'X)"' X' Ex]
YYEy Yy I SyrYy
Sy Py Ex Er¥y

This covariance matrix is then used in (30) and desired inferences can be made from that
equation. This distribution has historical interest,® as inferences have been made from
the A derived from least squares estimation without knowledge of the distribution of the
estimators.®

Several variants of this estimation process are of interest. The first variant is special
structures on the error term, usually involving making it a function of the number of indi-
viduals or proportion (if using means) in each group, which makes the variance a quadratic
function of these numbers (Goodman (1959) seems to have been the first to propose this,
and there are models using it all the way up to King (1995)). Under consistency of the linear
probability model, however, the variance is a linear function of the number of individuals in
each group, so all of these approaches are misspecified. The second variant is using what is
known as the method of bounds. This method was introduced by Duncan and Davis (1953)
and forms the basis of much of the work of Shively. Recently King (1995) has proposed that
the use of information from the methods of bounds in estimation can be used to improve
estimation in aggregate voting problems. He makes the very broad claim that “any method
of ecological inference that ignores this information is guaranteed to be inefficient,” yet under
the usual assumptions of the method of maximum likelihood estimators from that procedure
are efficient. Can information from the method of bounds improve estimation?

32Note that in least squares, Var[y/n(X'X)™1(X'u)] = ¢?(X'X/n)~1, so that if plim (X'X/n) = Tx
(say), as is usually assumed, then since \/n tends to infinity, and the variance tends to a fixed limit, Slutsky’s
theorem does apply.

331t has particularly been used in Voting Rights Cases, such as Gringles and Garza.

341t is also possible to obtain an exact distribution for this estimator, as it is the ratio of two normal
distributions (see Hinkley (1969)). This distribution is complicated, however, and the usual number of
observations available in most ecological situations means that the asymptotic variance will be adequate.
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Under consistency of the linear probability model, the answer is no. The method of
bounds for a single equation essentially creates a 2 by 2 contingency table with the marginal
entries being formed by n;(z),z = 1,0, and Y; and n;(0) 4+ n;(1) — Y;. Then the cells of the
table are those who voted for the candidate versus those who did not by those who are in the
group defined by x = 0 versus those in the group defined by = 1. Let n;;; be the number
in the cell defined by those who voted for the candidate and those in the group defined by
x = 1 (obviously, given the marginals, knowing nyy; allows the determination of the other
cell entries). Then nyy; must be less than the minimum of Y; and n;(1). This information is
used by King to truncate the distribution of the error terms used in his model.

To use this information, consider the joint distribution of nq1;,Y;, conditional on the

n;(z).*® Then
Pr(uss, Vilns () = Pr(Vi Iy (2) Pr(rns [ Vi) (3)
The likelihood that is usually estimated is derived from Pr(Y;|n;(z)) (and given in (16)),
and the parameters of interest are p;,p;. Additional information would then come from
Pr(n11;|Y;,n;(x)). This density function is*
b(ki,m;(1), p)b(Y; — ki, n (1), po)

le—Hg:Y] b(llvnj(1)7p1)b(l27nj( )7p2)

ki =0,...,min(n;(1),Y}),

Pr(niij = k1[Yj, nj(z))

where b(k, n, p) is the k™ term of the binomial distribution parameterized by n and p. This
density is zero whenever ky is greater than the minimum of Y; and n;(1), so conditioning
the error terms when this condition is not met is the same as conditioning on an event of
probability zero—in other words, no new information is provided. What is closely related to
this method, however, and can improve estimation for the prediction of a quantity for any
particular electoral unit, is to condition on the Y;. That is, use the distribution given above
(Pr(n11j; = k1]Yj,nj(z))) to make point estimates for nyy; (whence nyy;, ngy; and nygj). In
that sense the King technique does improve estimation.

Shivley, on the other hand, suggests that prior knowledge on the values of the nq;; be
incorporated into the estimation problem. Certainly, a deterministic bound can be easily be
incorporated into (16) by simply restricting the range of maximization for the parameters.
The more usual way, though, of incorporating prior beliefs is through specification of a prior
distribution representing those beliefs and then integrating the density and that prior to
obtain a posterior distribution. The natural (or conjugate) prior for a binomial is the beta
distribution, so let the prior for the group defined by = 1 be By(0y,6;), and that for group
defined by z = 0 be By(¢1, $2), where By is a beta distribution of the first kind (see Maddala
(1978), pages 406-411, for definitions). Then (16) becomes

S\ B+ O, (1) 40, —0)
PI’([X]') = Z( ; ) B(ahez)

1=0

35Note that nq1; is not observed in ecological problems (and so cannot directly be used in estimation), but
that the method of bounds is in essence using a function of ni1;, so it makes sense to analyze this in terms
of the distribution of n;.

36This probability is also given in Hannan and Harkness (1963), who provide a normal approximation.

18



( n;(0) ) B(K; — i+ ¢1,1;(0) + ¢y — (K; — 1))
Kj—1 B(¢1, ¢2)

where B is the beta function. This can then be maximize with respect to 8y, 6,5, &1, ¢, and
the desired probabilities obtained by the relationship p; = 61/(61 + 62) and ps = ¢1 /(1 +
$2).*" The beta-binomial does not restrict the range of the parameter but other priors can
be adopted which do (such as a uniform distribution, appropriately normalized, over [p, p]).
No simple closed form prior exists in this case but numerical methods are available.

5 The Transition Model

The next application discussed is that of the transition model. The transition model is once
again Goodman’s but now one has that there are two races with alternatives ¢; = 1,...,C}
for the first race and ¢, = 1, ..., (5 for the second race, and the individual chooses one and
only one combination (¢, ¢z). Then there are 'y equations to be estimated, which are of the
form

Ty = Vit + -+ Yo Bocr + €, (36)

where Y., are the number of individuals choosing alternative ¢; in race 1 and Z., are the
number of individuals choosing alternative ¢y in race 2.*® The interpretation of the f3.,., is
that it is the conditional probability of making a transition from state ¢; to ¢;.%*

The relationship between (15) and (36) can be calculated as follows. Assume the the
choice behavior of each individual follows a multinomial distribution, with the probability
of choosing (c1, ¢;) for the i individual being p.,.,,, where g is the group that individual is
in. By the properties of the multinomial, the probability of choosing ¢; for the ** individual
(irrespective of the choice of ¢3) is 2522:1 Peresgs and the distribution these choices follows is
also multinomial (call this probability law Y;). Similarly, the probability of choosing ¢, for
this same individual is chllzl Peyeyg and this probability law is also multinomial (call it Z;).
Under the multinomial, then, the choice behavior in each individual race is derived from
the choice behavior in the two races together, and furthermore, each individual race can be
estimated consistently.*.

Now, (36) can be rewritten as

Z=YpB+e, (37)

37In practice the likelihood derived from this probability density function can be approximated with a
location parameter and a normal error term.

38These choices can include such things as not voting or “rolling-off” from one race to the other.

39Conditional since it assumes that the individual was in state ¢; to begin with. The definition is the same
as for transition probabilities in Markov chains.

40The problem with not using the multinomial is that then the collapse to the individual races is not, in
general, consistent with the probability law assumed on the joint choices. One could, though, use (15) to
calculate the various marginal distributions. One may want to use a joint distribution different than the
multinomial is if one i1s attempting to infer an asymmetrical effect in vote choice. An example would be
coattail voting, where the vote choice for President is assumed to exert an influence on congressional races
in particular but not wvica versa (see Miller (1955)).
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where 7 is now N by C5, Y is N by (1, and 3 is C; by (5. The least squares estimate*! of
[ is

pB=YY|'Y'Z, (38)
Since Z; = Zj1+ ...+ Zjn] and V; =Y +...+ an] from the proceeding paragraph, if there
are (G groups with common probabilities, Y can be approximated by X0 + Uy and Z can
be approximated by X' 4+ Uz, where X is the N by G matrix of the number of individuals
in each group ¢, © is a G’ by Cy matrix of weights, I' is a G by Cy matrix of weights, Uy is
a N by 'y matrix and Uz is a N by C; matrix of disturbance terms. So (38) becomes

B=[(XO+Uy) (X0 +Uy)| H(XO + Uy )(XT + Uy), (39)

or, taking plims

plim B = [EYY + @lAgxx(a]_l[@/SXXF + EYZ] (40)

where plim U Uy /n = Yyy, plim Uj,Uz/n = Xyz, and plim X'X/n = Sxx.** This then
typifies the nature of the misspecification in the usual transition model.

It turns out, though, that actual transition coefficients can be derived under the assump-
tion of a multinomial distribution on the choices. This derivation is done in Appendix II. To
test the model, a dataset is necessary, preferably one of enough specificity that a reasonable
determination can be made of whether the model has any utility. The one used here is the
Los Angeles County Ballot Image tape from the 1990 General Election, which contains ac-
tual ballots (and hence transition probabilities between two races). The transitions are thus
in the form of individual ballot images, that is, the exact ballot that an individual voter has
cast. The ballots are identified by precinct but not by individual voter within precinct, but
they can be used to construct exact transition tables for an individual precinct. The aggre-
gate election results are available by precinct also, and the transition model can be estimated
and the estimated parameters checked against the actual transition probabilities.*

For a sample test two ballot propositions from the 1990 General election were used,
Proposition 131 and Proposition 140. Both of these propositions imposed term limits on
the state legislatures and statewide constitutional officers, with 131 being proposed and
funded by a Democratic candidate for Governor and 140 being proposed and funded by a
conservative Republican County Supervisor from Los Angeles County. 140 was the more
draconian of the two, cutting the legislative budget by 40 percent and placing a limit of
three two-year terms in the State Assembly (as opposed to six in 131). It is a proposition

“IThe use of least squares for examining this model can be justified for several reasons. First, if the model
is correctly specified, it provides a consistent estimator. Second, if the model is either a form of the Hawkes
or Brown and Payne model, the term of the likelihood which contains the location parameter dominates
the likelihood (both Hawkes and Brown and Payne demonstrate this in their respective articles), so the
maximum likelihood estimates will be close to this expression, even if the probability model is misspecified.

42The analytical expressions for Syy and Ly z are given in equations (61), (63), (62), (64) in Appendix
IT.

43There is a wealth of associated census data with these precincts, which can be used as parameterization
variables. This data includes such things as ethnicity, age, housing status, and housing cost—census variables
from STF3A (this data is associated with the precincts by a complicated method which is interesting in and
of its own right and is described in McCue (1994)).
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where one would expect considerable differences in voting behavior among voters of different
partisan persuasions.

For this analysis two groups are created—those with declared Democratic partisan affilia-
tion (and smaller parties which are leftward leaning) and Republicans and those associated
with rightward leaning parties. Only actual voters at the polls were used for this analysis, so
there are 3 possible choices for a voter on each proposition—Yea, Nay or Abstain.** Various
covariates were used, mostly dealing with income and ethnicity. There are 4,618 precincts
in this analysis, representing the voting decisions of 1,684,785 individuals. Estimates for
the transitions and marginal race choices are given in Table 4 for the left partisans, right
partisans, and both groups combined, with the actual transitions and marginal race choices
also displayed.

[Table 4 about here]

The most obvious thing to discuss here is that there is very good agreement between
the estimated transitions and marginal race choices for the combined groups and the actual
transitions and marginal race totals for all groups (and given the information on the ballot
tape, these are the only ones that can be checked). The differences in the estimates from the
actual totals range from .09 to 5.31. One can see dramatic differences between the voting
behavior of the right partisans and the left partisans. In particularly, sixty percent of the
right partisans voted no on 131 and yes on 140, whereas less than one percent of the left-
leaning partisans made these two choices. Given the different effects of these propositions,
and the respective authors, this difference makes substantive sense.

[Figures 1, 2, 3 and 4 about here]

It is also possible to test the formula for misspecification given by (40). In Figure I
the actual transition coefficients derived from the ballot image dataset for a number of
proposition pairs are plotted against the estimates derived from the least-squares estimator,
equation (38). In Figure II these estimates are plotted against the predicted values from
the equation which typifies the misspecification in the transition model, equation (40).*°
As can be seen from Figure II, the usual transition model estimators are closely predicted
by equation (40) In Figure III, transition coefficients derived under the likelihood given in
Appendix IT for 756 proposition pairs are displayed.*® Finally, in Figure IV, actual choice
probabilities are plotted against estimated choice probabilities. A comparision of Figure |
and Figure III shows that the proposed estimator is far superior for this dataset, while in
Figure 1V, 95 percent of the estimates fall within plus or minus 6.5% of the actual choice
probabilities, meaning that there is sufficient accuracy to make substantive conclusions on
from the estimates of the choice probabilities.

44 Actually, even though the non-voters and the absentee voters have been removed, there are voters who
cast invalid ballots—they voted for both yes and no. These voters (who are a very small percent) are coded
as Abstain.

4Figures I and IT are adpoted from McCue (1992).
46These pairs are are estimated without parameterization. There are 4,616 precincts in each estimation.
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Table 5: Joint Estimation of Models with Individual and Aggregate Data

Type of model

Same Different
Individual Known 1 II
Observations Unknown  III v

6 Joint Individual and Aggregate Estimation

The other application of (15) that will be considered here is on the joint use of individual
and aggregate data in inference problems, with a particular eye towards testing hypotheses
about models of voting behavior set at the level of the individual with aggregate data. It
is one of the paradoxes of political science as a discipline that the most commonly observed
political behavior, that of election returns, is in general not used in constructing or testing
models of voting behavior. It is hoped that the methods presented here will allow such data
to be used in such a pursuit.

The conceptualization of the problem is presented in Table 5.  There are four cases,
formed by a cross of the model and the individual observation. The individual observation
is divided into two categories, whether it is known which of the aggregate data groupings
the individual observation is in and whether it can be removed from the aggregate grouping
(what removed here means will be seen in a moment). The model cross is whether the
probability law is the same for both the the aggregate data analysis and the individual data
analysis, or whether it is different. All of these cases can be analyzed using (15).

Case | (same model for both aggregate and individual data, individual observations
known) is the simplest. Assume that in electoral unit j that the first m; observations are
individual observations. Then assuming independence of all the Yj;, (15) can be written

Vi=> Vit > Vi (41)
=1 1=mj;+1

This is the equation to use to find the probability law for the Y. For the linear probability
model, if Kj; is the number of votes observed from the individual voters, and Kj; is the
number of votes observed from the remaining aggregate voters, then the likelihood is*”

L(a,8) = H {Pr[ Z Yii = Kj2] H ]___[ Pr(Y; = c)} (42)

i=mj+1 =0 {ili€jy=c}

{ 1 exp [_ (Kj2 = Xj(a+8) - 120‘)2]
JI(O‘+5)+X]204) 2(Xj1(a+B) + Xjpa)

I
|::]2

47An obvious test for the adequacy of this model is to estimate it with the restriction that the individual
and aggregate parameters are the same and unrestricted, then forming the appropriate likelihood ratio test
from these two estimations.
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H o+ 9,3 ]___[ 1—04—$2iﬁ}-

{ilied,y=1} {i]i€s,y=0}

If the model is different between the individual and aggregate data but it is still known
which observations of the aggregate sum are the individuals (case II) then equation (42) is
still valid but the actual models for the aggregate and the individual estimations will of course
be different. The implications of models being different from one another but predicting the
same type of outcome (vote choice on a candidate) but both being correctly specified will be
considered under case IV, discussed below.

Case III (same model for both aggregate and individual data, individual observations
unknown) is sometimes found in Voting Rights Act litigation. While most of the analyses of
racially polarized voting center on ecological means of estimation,*® occasionally an exit poll
or voter survey is available which may also provide evidence for or against racially polarized
voting. The usual procedure in statistics if one has two estimators and wishes to compare
them is to calculate the joint distribution and then test é; — é5 = 0, with the variance being
simply Var(é;) + Var(éz) — Cov(é,é3). Here the é; is the estimator from the aggregate
estimation and é, is the estimator from the individual estimation.*® Then the variance of
the aggregate estimator (if done by maximum likelihood) is minus twice the inverse of the
matrix of second partials and the covariance between the two estimators can be obtained
by the method of Cox (1961). Thus the hypothesis of equal parameters can be tested and
failure to reject such a test can be construed as evidence in favor of the claim that racially
polarized voting really is being measured accurately (rejection of such a test, on the other
hand, implies that there are problems measuring racially polarized voting by either one or
both methods). If the test is not rejected then the two estimators can be combined to
produce a more exact bound than either estimate by itself.

Cases IV (different models for both aggregate and individual data, individual observa-
tions unknown) is what usually confronts the political scientist. Most theories of individual
choice behavior in political science deal with presidential vote choice, and those that are
quantified (such as funnel of causality, sociotropic, retrospective, and prospective typically
have the probabilities parameterized by continuous or at least many-category covariates.
There are now two problems. First, as described above, (15) becomes inestimable (though
still theoretically correct) if the Yj; do not convolve to a few common distributions. Second,
many of the data which go into these models (such as state of the economy, feelings about

politicians and parties, etc) are not observed at the aggregate level.”

48For a discussion of the Voting Rights act and the use of ecological estimation under the “results” test,
see Lupia and McCue.

49The individual estimation can, of course, be the linear probability model, but it can also be such
procedures as probit logit, or simply a frequency estimator. The aggregate estimation is assumed to be
estimated in a manner consistent with equation (15).

50The simplest way to do this is to minimize the variance of a linear combination of é; and és, that is,
Var(Aé; + (1 — A)éz2). In any case, the combination of information is well know—see Rao, page 389-391.

IThis is expressed Hanushek, Jackson, Kain (1974) as follows: “[M]any social science theories relate to
behavior at the microlevel, and these theories do not always lead to simple aggregations. For example,
model of mass voting behavior often require measures of individual attitudes on different issues or toward
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It is still possible, however, to make use of information from both the individual and
aggregate analysis together through comparison of the probabilities generated from each
estimation. If there are G groups in the aggregated estimation, then there are G probabilities

coming out of the estimation, py, ..., pg, or, if there is the parameterization p, = p,(r;, ¢),*?

5 — Sy p(ris ) Xy

= 43
g Z?:l Xgi ( )

From the individual estimation,?® calculate

Q _ ZiEg Q(Sia ﬁ)
o Hiliegtl’
where ¢ is the probability law assumed on the individual, s; is the data vector associated
with the individual, and 7 is the estimated vector of (conformable) weights for the data.

(44)

Calculation of variances for both of these estimators are straightforward and the covariance
may be calculated by the method of Cox. The G pairs of probabilities may then be compared
simultaneously and, if equality of the probabilities is rejected, other tests are available to
determine which probabilities lead to the rejection of the null hypothesis of equal probabilities
(see discussion in Stuart and Ord, Section 29.53, and references therein).

7 Discussion

This paper has covered a good deal of material. It has demonstrated that the most commonly
used model for aggregate voting analysis is a member of a more general class of models, and
that this general class of models has very useful properties. The implications of this analysis
allows a straight-forward calculation of potential “bias” through grouping and development
of models, which, with suitable restrictions, allow the estimation of such bias. It has derived
the distribution of an estimator which has been used in court cases for a number of years.
It has provided the solution to a problem which has been “unsolved” for over forty year,
that is, the transition model. And it has developed a straight-forward way of combining
aggregate and individual data. Furthermore, it has done it within the context of probability
theory, from which the entire field of statistics is derived.

This last point deserves emphasis. Probability theory rests on three axioms, and upon
accepting those axioms, the methods of mathematics can then be used to ascertain the truth
or falsity of an assertion. It one asserts that a probability model is true at the individual level
then by (15) one knows the probability model at the aggregate level. The key conceptual

the competing candidates. It is difficult to see how a model incorporating such influences could be specified
and an appropriate variable measured at the aggregate level.”

52Gee Appendix T for a discussion of parameterization.

53This assumes that there is sufficient information to place the individual in the same group as that
individual would have been in the aggregate group. For most data sets, this would seem to be the case,
particularly the ANES ones.
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misunderstanding here on the part of the literature in the social sciences, is, of course,
that if one has n identical objects producing either one of two values, then the central
limit theorem applies, that is, one has a normal approximation to the sum of bernoulli’s.
When one has whites and blacks in a precinct, and each type of person is assumed to
be identical to every other person of that type, one has the sum of two normals. This
concept of probabilistic aggregation is missing from nearly all of the papers referenced in
this article from political science, history and sociology and is present in nearly all of the
articles referenced from statistics.’® The converse problem exists in the statistical literature,
which is practically all concerned with voter transitions. In that body of work, there is
no concept of modelling individual decisions and thus no inkling that modelling one voting
decision as a linear function of other voting decisions is making that first voting decision
a function of realizations of random variables, and that those other voting decisions are
parameterized by other, exogenous, variables.

An important question (particularly for a substantive field which political science, history
and sociology all claim to be) is whether what has been presented here matters, that is, can
it make any substantive effects on the answers researchers have been getting from their
previous efforts at ecological inference? The answer is a yes, with one qualification. First
of all, it is clear that the reformulation of the transition model, which is new to this paper,
really is a breakthrough. The methods proposed for combining aggregate and individual
data, while straight-forward, offer promise of actually combining what heretofore have been
two distinct bodies of evidence. And, of course, the derivation of the formula for “bias”
and the distribution of the traditional two-equation turnout and vote equations, under the
assumption of consistency of the linear probability model at the individual level, are new.
So all of these contribute to the yes side of the ledger.

On the no side of the substantive differences, when one is estimating the response prob-
abilities of two (or more) groups with one election, the the common factor of nearly all the
likelihoods or methods in the literature is that they produce the least-squares estimator.
That is, (1) is pretty much always the equation and 3= (X'X)~'X'Y is pretty much always
the estimator,”® so none of these methods of estimation will make much difference in the
location parameters and hence not make much difference in the substantiative interpretation
of the response probabilities. This follows obviously from the fact that the least squares
estimator is consistent (if not efficient) if the error term in (1) is uncorrelated with the X’s.
The fact that this type of estimator is inefficient usually does not matter in an ecological
problem. Consider a congressional district with n = 200 precincts and one homogenous

54 For example, the knowledge of the distribution of the error terms on the linear probability model have
been known since at least Goldberger (1964, page 249-250), but might be considered “obscure”-at least
this author was unaware of it, which is certainly one definition of obscure. But being very much aware of
the aggregation of probabilities, a search was made for a reconciliation of the claim of any residuals in the
individual linear probability model with the implications of the central limit theorem—if the same assumptions
are made, then the two approaches had to coincide—this is the power of mathematics.

P5With parameterization, this would be the solution to Y (Y; — X;8(z;, 7))%
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group with probability p. Then

Var(5) = (e = 1 - P~ ) ()

where f1, is the average value of x. If there are 500 voters in each precinct then the standard
deviation of 3 is under .01. Thus least squares produces estimates for which the substantive
interpretation will not change if some other method of estimation is used.?®

While the inferences drawn from the estimators under different techniques may not matter
substantively, what does matter is whether one draws the substantive inferences to begin
with. That is, the central problem of aggregate inference (starting with Robinson) has
always been that one is very wrong and one gets both excellent goodness of fit statistics and
highly significant coefficients. Before parameterization the problem was persistent physically
impossible estimates,” after parameterization the problem became estimates which were
unlikely.?® Problems like these suggest problems with the assumptions of the model. Another
way to determine whether the assumptions are violated is to look at the goodness of fit of
the model,?® and if the goodness of fit is poor, not to use the coefficients to make substantive
inferences.®, The important point is that for one to assess the goodness of fit correctly one
must be modelling correctly, and thus the results of this paper are important substantively
in the following sense: they will tell the researcher if the interpretation of the estimates has
validity.

From a larger perspective, then, the synthesis here has been taking the usual social science
model of individual choice behavior and the usual statistical model of aggregation of random
variables. It is iterated once again that once one accepts the consistency of the individual
choice, the ecological “fallacy” is resolved.®! The techniques presented in this paper, though
specifically relating to the aggregation of individual choices, can be used for any type of
aggregation for which there is a model at one level of inference and it is being applied to
another, aggregated level of inference.

56Discussions of both the Hawkes and Brown and Payne likelihoods and what terms dominate are given
in each of their respective papers.

57Shivley (1969): “The lack of interest in ecological regression is probably due to the fact that errors in
estimation are likely to turn up either as negative percentages or as a percentages which are greater than
one hundred. This is disheartening to the researcher, and is difficult to present to his colleagues.” It should
be pointed out, though, that one can produce results with plausible substantive interpretations given a
sufficiently well-constructed database (see Tam (1995)).

58Brown and Payne: “A persistent feature of the fitted transition matrices obtained is the zero fitted
values in some cells.”

%One statistic that can be used is Y (V; — Xjﬁ)’f](Yj — X;p), which is distributed asymptotically chi-
squared with an appropriate number of degrees of freedom. This is suggested in Brown and Payne.

60Actually determining what “poor” is a subject for another paper

1ncidentally, the expected value of the correlation coefficient when calculated from aggregate data (as-
suming individual level consistency), is given in Lupia and McCue in Table 3. The difference between this
value and the one obtained from individual level data, as noted by Robinson is, of course, what brought the
problem of ecological inference to everyone’s attention to begin with.
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8 Appendix I

Why does parameterization work? One possibility is that the individual probability really
is parameterized by what is, after all, a contextual variable. Individual models in political

science, however, rarely have contextual variables in them, and there is another way of
viewing these variables which gives them an interpretation at the level of the individual,
using (15). Suppose the number of individuals in the g group who vote for a candidate

G

have been collapsed from gy other groups, that is, K,; = 37,2, K,;;, where 4 is the electoral

unit. Then
gm gm
E[Ky] = B[} Kyij] = D ngijpaj, (46)
i=1 i=1
where n,;; are the number of individuals in the g}‘fh group in the i** electoral unit and
9H
Ngi = 2. ;=1 Ngij-

It is obvious from the above the the expected value of K,; varies as ¢ varies, so the

location parameter itself is misspecified and thus the whole model. There is a scenario,
though, where the misspecification, while still present, is not as great and it relates directly
to reparameterization. In this case, it is assumed that n,;/n,; is constant,’? then E[K,;] =

.5 5 — 9H L . 53 :
ngipy, where now p, = 3272, ngiipy;/ngi, and p, is now constant. Then the variance under

the assumptions of one homogenous group is

. L 0 nygiipg; N - .
ngiPy(1 — py) = nQiT(l —Pg) = anijpgj(l — Py)- (47)
gt 7=1
The true variance is, of course,
gm gm
Var[Kyi] = Var[Kyijl = Y ngijpyi(1 = pgj), (48)
7=1 7=1
and the difference of these two expressions is
91
ngipy(1 — pg) — Var[Ky] = Z NgiiPej(Poi — Pg)- (49)
7=1

62Cases where such constancy might arise are such things as the ratio between men and women. Of course,

any such constancy is unlikely to be perfectly constant, thus producing another source of error.
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It will not be possible a prior:i to determine whether this variation is greater or less than
zero, as it depends on the covariation between the number of individuals of each subgroup
of g in the electoral unit and the difference of that subgroup probability from p,. The
important thing to note is that, as Brown and Payne point out, the estimation term involving
the location parameter is by far the most important in this estimation, and the location
parameter under this scenario is constant. Thus, while there is misspecification under this
scenario, it will not bias the estimates asymptotically.

The relation to the parameterized estimation is as follows. If one has a covariate r such
that ng; = ngj(ng,r;, ), then

9H o . 9H N
Z NgijPgj — E ngj(rjv ¢)ng _ ﬁg(rj, ¢)’ (50)
j=1 Tgi =t Tgj

becomes the new expression for p,. From the above, this is a constant location parameter
(conditional on the r;), but the variance is wrong, with the difference for any electoral unit
being

ingj(rj7¢)p9j(pgj _ﬁg(rﬁ@b))- (51)

Thus parameterization (if there is one which acts as described here), will make the location
parameter unbiased but it will change the variation. Given that the term where the location
parameter is present dominates, however, this will produce a consistent estimate, but it is
likely that various measures of goodness of fit (such as likelihood ratios, walds, and so forth)
will be higher than they would be ordinarily, even though the parameter estimates would be
very close to the actual value. This suggests empirical examination with actual or simulated
data will be necessary to determine the exact nature of this effect under parameterization.

An example might help make clear some of the ideas to this appendix. Suppose there
are actually two groups with common probabilities but instead only one group is modelled.
Then one has

Vi = Xupr + Xojpa + wn +uz = Xp(rj, ) + uz, (52)
where X; = X;; + X3;. Then,

Xijp1 + Xop
plry. ) =
J

= Tr1jp1 + T2;P2, (53)

where r;; = X;;/X;. If one actually models p(r, ) as the above, the mean vector is the same
and the difference of the variances using (51) is

X;ri;m [Pl - (lepl + 7"2jp2)] + Xjr?jP?[P? - (lepl + 7'2J'P2)] (54)

In this case, even while modelling as one group, one could write the likelihood as a function
of the p; and p, with the correct variance and perform an optimization (though of course it
would be simpler to simply estimate as two groups).

Usually, though, things won’t be that simple. Suppose the two homogenous groups are
defined by an income variable, with members of one group being defined as individuals below
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a certain level of income, and members of the other group being define above a certain level
of income. If the parameterizing variable z is simply the level of income in the electoral unit,
as is typical when census data is merged to the electoral unit, it will not provide a perfect
tracking for the two groups (as with the above), but instead will be highly correlated with
it. Then there is misspecification once again, and no easy analytical way of displaying the
misspecification. Once again empirical examination will be necessary to determine what the
effects of this misspecification are.

This is probably the appropriate place to comment on district analysis, that is, ecological
regression when the electoral unit is the district rather than the precinct. Suppose that
parameterization takes place at precinct level. If Yy = 377 Yy, is parameterized at the
precinct level, then Y; = Z]%dd S Yy will be the convolution of Dy random variables with
no common distribution. This is the same problem as discussed in section 2, where the
likelihood had too many parameters to estimate. Thus any estimation at the district level
when parameterization takes place at the precinct level will be misspecified. Only if one
can make precinct estimates without parameterization can one then make district estimates,

with or without parameterization.

9 Appendix II

The extension made here to the model presented in Lupia and McCue now allows the esti-
mation of transition coefficients between the candidate choice in two separate races. That
is, if an individual faces two races on the ballot (such as the race for President and the race
for House of Representatives), the assumption is made that the the individual chooses one
and only one choice on each race.®® Thus, if there are C; candidates for the first race and
(5 for the second, the individual falls into one of C1C5 cells.

It is assumed that there are G groups in the electorate, each group being chosen so that
they are homogenous (that is, the individual follows a multinomial probability law which is
common to all members of the group). Parameterize the probabilities of the multinomial by
the two indices ¢; = 1,...,Cq, ¢ = 1,...,Cy, with the probability of an individual in group
g choosing candidate ¢; in the first race and ¢; in the second race being p.,c,,-

Arranging these probabilities in a table, one has

P11y P1Csyyg /811g

(pllgal"vpclcbg) = : h : ' (55)
Pci1g " PCiCag /81019

5215] e /BQng ‘

where,

63These choices can include such things as not voting or “rolling-off” from one race to the other.
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(56)

C
Breg = { 26022:2])“2577 r=1
reg —
Yoci=1 Peregy T =2

Here, then, 3., being the probability of the individual in group ¢ choosing the Ah

candidate in the ' race. These Breg's are the usual parameter of interest in ecological
regression (as opposed to the transition model) and it can be seen that estimation of the
transition parameters provides an estimate of the ecological regression coefficients.®* Thus
the solution to one problem provides the solution to another.

Using the probabilities above, the (random) race results can be written using the multi-
variate normal approximation to the multinomial distribution as

Yoy Xgpi1g Fury o 2, Xgpiowg 10,y | V2
Prob (Yi, -+, Zc,) : : :
Zg Xgpcl lg + Ucy1g " Eg Xgpclcw + UC, Cayg YCI
71 Ze, ‘

where X, is the number of voters in group ¢ and the u are distributed multivariate normal
with covariance terms as follows:

_Xgp01d2gpd102gv g = h7 G 7£ dy or ¢ 7& da
E [te,dygtdyeon] = 4 —XgPeresg (1 = Peyeng) s g =h, 1 = di and ¢y = dy (57)
0 g#h

To maximize the likelihood function the covariance matrix must be calculated. The
means and covariances are calculated from the following:

C
)/Cl = E (Xgpclcw + uclczg) = E (XQ/BICLQ + vlclg) ) (58)
co=1 g g
C1
ZCz = Z (Xgp6162g + uclc29) = Z (Xgﬁ?cw + U2029) 3 (59)
c1=1 g g

with

Ca _
vmg — { ZCQ:Q ucczga r = 1 (60)

C _
Yoel=1 Ucyeg, T =2

64Gtricly speaking, these are not transition probabilities are being calculating, since the transition proba-
bilities are the conditional probability of moving to a choice in the second race once the first race has been
chosen—thus, t;,.,; = pclcw/zg;ﬂ Peycag 18 the usual transition probability. The notion of simultaneous
choice here makes the parametrization by the cell probabilities more natural and the transition probabilities
are simple transforms of these probabilities.

32



The means are obvious from the above. For the variances, one has

Cs
Var (Vo |X. p) = Var (Z ) ~ Var (Z 3 ) S Xy (1= Bro)s (1)

g ca=1

and similarly,

Var (ZC2 |X7 p) = ZXQBQQQ (1 - 62029) 3 (62)
Cov (Y., Yy, | X, p) ZX BiergBrdigs (63)
and
Cov (Z., 74,1 X, p) ZX B2cr9B2d54- (64)
Finally,

Cov (Y, Z,|X,p) = Cov (Zvlclg7zv2629))
g g

Ch 4
E Z Z Ueydag Z ud1629]

g do=1 di=1
do=1d;=1

I Cy Oy
= ZXQ Peicag — Z E p01d2gpd102g]
g L

do=1 di=1

e ZXg [p61029 - /8101952029] .
g

[ Cs Ch
= ZXQ Peicag — Z Peidag Z pdlCQg]
g

It is this last covariance term which allows the identification of the transition probabilities.
The intuitive interpretation is the same as that of independence in a n by m table-that is,
if all of the covariance terms of the Y and the 7 are zero, then the choices for the two races
are independent (the cell parameter is simply the product of the marginal sums, which in
this case are the ['s).

Letting 1,, be an nx1 vector of ones and 1,,,.,, be a nxm matrix of ones, the final covariance
matrix becomes

o = £ o a5

EX dlag P 102) P9102$C2P; Pg - Pg102z01 Pg
Pl‘ P;101$C2 Pt dlag(Pglcl) — P;lclxcl Pg 5

g

where the last identity comes from the fact that
_ ﬁlg _ PlCz
- ()= (e (65
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and so
ﬁ 3t — P9102IC2P; Pglcﬂﬁclpg
97”9 P;101IC2P P;lclzcl Pg

: (66)

g

As is usual in these case, p can be parameterized by function of covariates. The form
used here is

62901 c2g

C’1 C’2 Zad d ’
Pdi=1 Ddy=1 €10

where the z is a vector of covariates (including one) and f¢,¢,, is set equal to zero for all g
for identification.

(67)

Peyeag =

The relationship between the likelihood presented here and the likelihoods presented in
the statistical literature on voting is as follows. For only one race, the likelihood for this
model without a reparameterization of the probabilities as a function of exogenous variables
and weights is given in Hawkes, the likelihood with such a reparameterization is given in
Brown and Payne (for the case when the compound multinomial parameter is infinite).
For two races, this likelihood is not given in the literature. Incidentally, this model can
be extended to three or more races if some of the multinomial probabilities are restricted
(usually to zero).

The arrangement of the data in (55) is an example of a probability distribution called the
bivariate multinormal (cumulants for this distribution are given in Wishart). The Hawkes
model (and the Brown and Payne model without the compounding by the Dirichlet distribu-
tion) are examples of convolutions of univariate multinomials. The convolution for bivariate
(or more generally, multivariate) multinomials is a “new” distribution,® and it is therefore
titled the aggregate multivariate multinomial distribution.

55Brown and Payne note that the compound multinomial has been used before but that the “aggregate
compound multinomial”, that is, the convolution of the compound multinomials, is new. This distribution
is thus new in this sense.
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